Uniform Nanowire Arrays for Science and Manufacturing

Webp adobestock 286468482
Adobe Stock

Uniform Nanowire Arrays for Science and Manufacturing

The following press release was published by the National Institute of Standards and Technology on Dec. 2, 2014. It is reproduced in full below.

Defect-free nanowires with diameters in the range of 100 nanometers (nm) hold significant promise for numerous in-demand applications including printable transistors for flexible electronics, high-efficiency light-emitting diodes, resonator-based mass sensors, and integrated, near-field optoelectronic tips for advanced scanning tip microscopy.

That promise cannot be realized, however, unless the wires can be fabricated in large uniform arrays using methods compatible with high-volume manufacture. To date, that has not been possible for arbitrary spacings in ultra-high vacuum growth.

Now NIST's PML's Optoelectronic Manufacturing Group has achieved a breakthrough: Reproducible synthesis of gallium-nitride nanowires with controlled size and location on silicon substrates.

The result was achieved by improving selective wire-growth processes to produce one nanowire of controlled diameter per mask-grid opening over a range of diameters from 100 nm to 200 nm. Ordered arrays with a variety of spacings were fabricated.

In the near term, the research will be used to create a wafer-scale arrays of probes for devices that examine the surface and near-surface properties of materials, to optimize nanowire LEDs, and to produce nanowires with controlled diameter for a collaborative project involving printable transistors for millimeter-wave reconfigurable antennae.

Source: National Institute of Standards and Technology

More News